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Stability of Honeycomb Sandwich' Cylinders

MEHMET 0. KICIMAN DON Y. KONISHI e [y —
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; b = circumferential dimension ( = 27R) %E 25
= core thickness ’ 2 2/:,: . jf:
D = flexural prigidity of panel 0 o o
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i = 12 o2 1t
3 Ef = Young's Modulus for the face sheet 4 j;
L f = actual stress 2 OTE oL ] ﬁzs
l F = allowable stress TTTT] "l

| oy
Gl = core shear modulus 10 2 4 6 8100 2 RCEl 6 81000
= a parameter representing ratio of
shear to flexual stiffness
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Fig.1 Buckling of § § sandwich cylinder loaded in axial com-
pression
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K = buckling coefficient (: N nZD) v-u = inverse of v'-l-
L = length of cylinder
) myn = integers (1,2,3, and so on) Subscripts
l N = load (1lb/in.) § = shear
! p = external lateral pressure load (psi) X = in x-directlion
R = radius of cylinder to mld-point of face y = 1In y~direction
sheets or ratlo of actual stress to Xy = in xy-direction (torsion)
theoretical critical stress
tF = face sheet thickness INTRODUCTION
U,V,w = displacement of polnt on shell medlan
surface 1n X, ¥, and Z-directions re- For the case of thin-walled cylinders, the
spectively critical combination of torsion and axial load
U = shear rigidity of panel [: Gé(c+2tF)] has been treated previously (}_),l as has been the
combination of torsion and external lateral pres-
X = axlal co-ordinate of panel
‘ sure (10). Theoretical equations for sandwich
Y = clrcumferential co~ordinate of panel —
cylinders under axlal compression only (12), tor-
Z = radlal co-ordinate of panel —_—
> 2Et M sion only (6), and lateral pressure.only (7) have
Zl = "Zi‘ EES also been treated. Therefore, the scope of this
R m paper 1s to extend the presently known formulas
p = 2L to the case studied, and to present the results
b

in the form of easily used graphs.
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plasticity correction

M = Poisson's ratio (=0.3 for calculations)
N= N /N DISCUSSION
5 xy/ X%

’ O' 7= N, / N, The mathematical derivations of the equations,
L~ '?,,;= 1/ as wei]j._xas the assumptions, are presented in the
b Q ' Appendix.

v o= , ) The critical combination of loads that causes
~N O, =8 . _Db . (_g) = __ L ' the general instability fallure of a simply sup-
C+tg b R( C+tF) ported, isotropic honeycomb sandwich cyl.*.!'.nder un-
2 2 EY der axlal compression, external lateral pressure,

v £~;‘2 + a_yé' and torslon can be obtalned from the equations

X
V’* - 54 2 34 04 1 yUnderlined numbers in parentheses designate
' A Ft 32 dyz + —é;,ﬂ References at the end of the paper.
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Fig.2 Buckling of S S sandwich cylinder loaded in axial com-

pression and lateral pressure
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Fig.4 Buckling of § § sandwich cylinder loaded in axial com-

pression and lateral pressure
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pression and lateral pressure

F K 7#°D K
- = 2 or /™ .« —— (l)
n - oL tp J 2ty
or 1
- L — (2)
n I 2ty
and 1
F K U
S oA — S (3)
n 3 2ty

when the stress coefficlents Kx or K. and K;{ are
known. The curves required to obtaig these goef-
ficlents are shown In Figs.l through 11. The

equations used to obtailn the-curves are equatlons
(A12) and (Al13) (Appendix). Since the radius of

2

Fig.5 Buckling of S § sandwich cylinder loaded in lateral pres-

sure

the cylinder 1s assumed to be large compared to
the thilckness of the sandwilch, Ny = DPR.

When a cylinder 1s loaded under axlal com-
pression only, axial compresslon and lateral
pressure only, lateral pressure only, or torsion
only, Figs.l, 2 through %, 5, or 6, respectively,
can be used to calculate K » K, orK . How~ ¢
ever, when the combined case 1¥ requirgd use of
the interactlion curves, Figs.7 through 11, will
be required. The use of these curves is as fol=-
lows: )

1 Find Kx or K and K
cases, Figs.l through 6.

/2 Calculat: 1)3x X?K ()fx/f )(K /K )} or
y yUsil.ng the approgriage interaction curve,
Figs.’}’ through 11, K' or K' and X ' can now be

X v T XV

for the uncombilned
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Fig. 6 Buckling of S S sandwich cylinder loaded in torsion
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Fig.7 Interaction curves for axial compression and torsion

found from ?he relationships K# =
R Ky and Kx = Rx %y
L p o¥ P agd F* can now be obtalned from
equationx(l) or (2) Snd equation (3).
In order to facilitate further the calcula-
tions, J can be obtalned from Fig.l2.
In order to obtain the curves, Figs.l through
11, equations (Al2) and (Al3) (Appendix) were
solved for various J, 2, and R or R .
This was done by means o§ the IBM 7090 higg-speed
digital computer. Since 1t was impossible to
plot all the lnteraction curves which resulted,
the curves shown represent typlcal results and
will produce a maxlmum of a 5 per cent error from
the theoretical in the range given. This 1s well
wlthin englneering, accuracy for a problem of
this type. When J and 8 are chosen so that
x = J, then the 1nterac%ion equation RX (or R )
K = 1 should be used. It should also be

R K orK':
X X y

noteg that when L/R > 10, the values obtained

z

|
>
-<

1.9 | % ity

9 S

6 SN
RS .\\< 10£6,¢50
3 . ... \Y 64
.2 a“‘j=3 s ’.S\\\

A A\

0 ™" k

0 0 2 3 4 5 6 =X 9 |0

Fig.8 Interaction curves for axial compression and ex-
ternal lateral pressure and torsion for vV = 1/2
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Fig. 9 Interaction curves for axial compression and lateral
external pressure and torsion for y =1

from the curves will be conservative,fsince n in
equation (Al3) must be an integer.

It has previously been observed that test re-
sults for axlally loaded, thin-walled cylinders
dld not agree wlth the theoretical values ob=-
tained from the small-deflection theory. However,
because of the increased thickness inherent in
honeycomb=-sandwich construction, this problem
should not be encountered. Test results are
avallable for axlal compresssion only (11, 12),
and torsion only (11). The tests for axial com-
presslion were in the reglon of K = J, and there
1s reasonably good agreement witﬁ theory. The
torsion tests were inconclusive.

According to (12) K = J for 4" = 0 when
o x > 5.18 J, and K__ = J when 0 > 10.36 J.
The curves for Figs. ly(é’— 0) and "E seem to veri-
fy these relatlonships. However, there is a
slight difference in the case where K =J,
since an insufficient number of termsxof the ma-~
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Fig. 10 Interaction curves for axial compression and external
pressure and tension for +'1/2
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Fig. 11 Interaction curve for external lateral pressure and
torsion ' =0

trix, equation (Al2) were taken. The curves for
#'= 0, Fig.l, can be replaced by the single
curve in Fig.1l3, by changing the parameters to
those shown,

CONCLUSION
E:g theoretical solutlon for the general in-
gﬁabiliﬁi]of a simply supported, isotroplc honey-
comb sandwiéb cylinder under axlal compresslon,
external lateral pressure, and torsionﬁis pre=
sented in the Appendixlj
[Ehe resulting curves were drawn and shown’ infuw
igs ~l-threugh~3#~ The use of these curves
should produce an error of less than 4 5 per cent
. from the theoretical equatlons.
The very limited test results avallable
LEESWed reasonably good agreement with the thequL)

y
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APPENDIX A

8 THEORETICAL SOLUTION FOR A SANDWICH CYLINDER

The following assumptions were made to derive vt'he equations in this
! appendix:

1, Face plates are of identical material and thicknesses.

2. Core is isotropic.

3. Core does not carry any bending stresses,
' 4, Face sheets do not carry any normal shear stresses.

5. Radius of the cylinder or curved plate is large compared to the

thickness of the sandwich.

6. Axial compression is uniform.

7. Lateral external pressure produces uniform compression constant

8. Radial deflection of the cylinder before buckling is small compared
to the sandwich thickness.
The equation of equilibrium for a honeycomb sandwich cylinder in terms
of the transverse deflections of the rﬁédian surface was formulated by Wang
and De Santo (Réference 12). This modified form of Donnell’s equation is

i
|
I throughout the perimeter.
} shown below.

Q,w) 0 (})]

| Where (Qy) is the operator defined by
| w3 [otaEte 2% (N Ak ¢ Ny 2L oy A
Oy = v (5 - %) [V _Rif'j%@ ~( "Sail-{- Yoyt +‘2N*Yaqu) (AZ)
Here the implied boundary conditions are

w(@g)=urlo) = 22 (0g) - £ (Lg): 0 (43

2
X’

Using the Galerkin method and defining w as shown below in order to




satisfy the boundary conditions

W= ain 1L Wy é_ mm—ﬂ—-}-m W’é bmmm‘{lt 0\4)
m=1 m*1

Following Galerkin’s method, two sets of n simultancous equations are

obtained,
J/ ¥pQwidady =0 (ase)
Jwp Q@dxdy-o where D)
Vpaen B—Lmé—ﬂ—’& Abv)
Wpscou 1LY 4%%_.:,& Aew

Letting Q = Q; and substituting equations A2, A4, and A6a into equation
Aba, we obtain

. P 1 * PN, 3
0= f mr‘.‘ : x{{v (3-2)F Trg%a_(ng_l«}N‘d,—gl-c»Z.“X%a bﬂ}

"Also letting Q=Qg and substituting equations A2, A4, and A6b into equation
A5D, We obtain the second set of equations. o
-_[f cos 27 b T f,m{ [{vf—(ﬁ '—')[v L'E'!!:ES;T-(N*&"fN% +1Nl%3 ng}
[4““ ‘n"f‘% ;_ £ ain _-—- +cw"'-1"‘a'é b MMT’]}JxJ% (AS)

Performing the mtegration over the limits gives, - (A%9)
% p2y% nizl mp? LT Y ket | U] O me B
“om {04P RPN [+ 235 Jekx (o v p7) [ 1 -8Ksy w,ﬁ‘:, b,,;_‘,%,ﬁ#—ji‘]-o

co ht _"ﬁ
bh{(_m-rﬂ )4”‘ {H”““'p ]ﬂ(%(m-r?‘ﬁ )[H”‘ kY. ‘J}-&SK; %ﬁf -zﬁz-[ue—_ =0

O
(A‘ib)
Where:
tension is(®) m+p = 0dd integers,

Nuy = Kv.lg'“Da_na Nx = KK«D

It is possible to obtain a nontrivial solution for equations A9 and A10

by setting their determinant equal to zero
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Factormg each column with the proper(l < "' £ ) and calling

NL= /(e 2t

We obtain the foilowing determma.nt:
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2 2,
PPRPPLY] 40-4%) O, (4
Here N;=1[(‘ *’.51) + T2 +K, [(i*+ ¥ R* ] Al3)
i tovs L Gl (
Lt
Where €,k < e (A14)
Using a third-order determinant and solving for Kx y we obtain
K = V NI N:.N_a
TV (@ N (RPN, (415)

Knowing  Kx, ¥ , Ok We can plot ny against [3 and find the
minimum value of Kx3°
A better approximation can be obtained from the fourth order

determinant
v 1)) 2, ) 2 2 3 _l"! '8
Ki, = (I—';;')lN1N1+('§')1NN4*(¥§)1NLNJ*(%)2"'5“4- [(7) NN, +(35) N\Nld'(%) Na.Ns*‘(%”N’NJ—u‘M}“(’ ’J)
g = - 3
2 (—7& +I%') (4 ")

PARTICULAR CASES

Case I - axial compression only

Let ‘Ni and ¥ (IN opuatew Al3) = O
K =(’) 2 ) T .2
(i*+8%) 4(i-*) Bk &
Then KX = l.,i((*. -Lf")m) + rr+(tl+al)l

Case I - Axial compression + lateral pressure

Let  Ni (v cquecion Ai3) ~ 0
Kx = (-)
Then  Ke« LLHE af-pfoiit
(FEE (P ye) (R0 (H0E)

Case III - Lateral pressure only

Let Ky (iz+ Xﬁl) =~ Ku’ Pz (in equation A13)

andlet N; =0

.1, aly? yak
_ (it 8Y) 4(1-#%)Quk i
Then Kg ‘61(l+ (}?@L} + “'4'(32'(!:1*‘62)1

Case IV - Torsion only

Let Kx (ln equatrenAl3) = Q

(it+ el)l () —p2) 65k i+
+
(H’ !-:.J ax) TTA(LJ‘*"ﬁl)L

P
Then NL—8B[

oo ™




Case V - Small deflection theory equation for a thin-walled cylinder

4
Let J—= 00 and G:K = —g;*‘:*-t_”

in equation A13 and cases I, O, T, and IV

[ .




